Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ectopic expression of a cytochrome P450 monooxygenase gene PtCYP714A3 from Populus trichocarpa reduces shoot growth and improves tolerance to salt stress in transgenic rice.

Identifieur interne : 001908 ( Main/Exploration ); précédent : 001907; suivant : 001909

Ectopic expression of a cytochrome P450 monooxygenase gene PtCYP714A3 from Populus trichocarpa reduces shoot growth and improves tolerance to salt stress in transgenic rice.

Auteurs : Cuiting Wang [République populaire de Chine] ; Yang Yang [République populaire de Chine] ; Haihai Wang [République populaire de Chine] ; Xiaojuan Ran [République populaire de Chine] ; Bei Li [République populaire de Chine] ; Jiantao Zhang [République populaire de Chine] ; Hongxia Zhang [République populaire de Chine]

Source :

RBID : pubmed:26970512

Descripteurs français

English descriptors

Abstract

In Arabidopsis thaliana and Oryza sativa, the cytochrome P450 (CYP) 714 protein family represents a unique group of CYP monooxygenase, which functions as a shoot-specific regulator in plant development through gibberellin deactivation. Here, we report the functional characterizations of PtCYP714A3, an OsCYP714D1/Eui homologue from Populus trichocarpa. PtCYP714A3 was ubiquitously expressed with the highest transcript level in cambium-phloem tissues, and was greatly induced by salt and osmotic stress in poplar. Subcellular localization analyses indicated that PtCYP714A3-YFP fusion protein was targeted to endoplasmic reticulum (ER). Expression of PtCYP714A3 in the rice eui mutant could rescue its excessive-shoot-growth phenotype. Ectopic expression of PtCYP714A3 in rice led to semi-dwarfed phenotype with promoted tillering and reduced seed size. Transgenic lines which showed significant expression of PtCYP714A3 also accumulated lower GA level than did the wild-type (WT) plants. The expression of some GA biosynthesis genes was significantly suppressed in these transgenic plants. Furthermore, transgenic rice plants exhibited enhanced tolerance to salt and maintained more Na(+) in both shoot and root tissues under salinity stress. All these results not only suggest a crucial role of PtCYP714A3 in shoot responses to salt toxicity in rice, but also provide a molecular basis for genetic engineering of salt-tolerant crops.

DOI: 10.1111/pbi.12544
PubMed: 26970512
PubMed Central: PMC5069455


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ectopic expression of a cytochrome P450 monooxygenase gene PtCYP714A3 from Populus trichocarpa reduces shoot growth and improves tolerance to salt stress in transgenic rice.</title>
<author>
<name sortKey="Wang, Cuiting" sort="Wang, Cuiting" uniqKey="Wang C" first="Cuiting" last="Wang">Cuiting Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yang" sort="Yang, Yang" uniqKey="Yang Y" first="Yang" last="Yang">Yang Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Haihai" sort="Wang, Haihai" uniqKey="Wang H" first="Haihai" last="Wang">Haihai Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ran, Xiaojuan" sort="Ran, Xiaojuan" uniqKey="Ran X" first="Xiaojuan" last="Ran">Xiaojuan Ran</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Bei" sort="Li, Bei" uniqKey="Li B" first="Bei" last="Li">Bei Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jiantao" sort="Zhang, Jiantao" uniqKey="Zhang J" first="Jiantao" last="Zhang">Jiantao Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Hongxia" sort="Zhang, Hongxia" uniqKey="Zhang H" first="Hongxia" last="Zhang">Hongxia Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26970512</idno>
<idno type="pmid">26970512</idno>
<idno type="doi">10.1111/pbi.12544</idno>
<idno type="pmc">PMC5069455</idno>
<idno type="wicri:Area/Main/Corpus">001872</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001872</idno>
<idno type="wicri:Area/Main/Curation">001872</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001872</idno>
<idno type="wicri:Area/Main/Exploration">001872</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ectopic expression of a cytochrome P450 monooxygenase gene PtCYP714A3 from Populus trichocarpa reduces shoot growth and improves tolerance to salt stress in transgenic rice.</title>
<author>
<name sortKey="Wang, Cuiting" sort="Wang, Cuiting" uniqKey="Wang C" first="Cuiting" last="Wang">Cuiting Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yang" sort="Yang, Yang" uniqKey="Yang Y" first="Yang" last="Yang">Yang Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Haihai" sort="Wang, Haihai" uniqKey="Wang H" first="Haihai" last="Wang">Haihai Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ran, Xiaojuan" sort="Ran, Xiaojuan" uniqKey="Ran X" first="Xiaojuan" last="Ran">Xiaojuan Ran</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Bei" sort="Li, Bei" uniqKey="Li B" first="Bei" last="Li">Bei Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jiantao" sort="Zhang, Jiantao" uniqKey="Zhang J" first="Jiantao" last="Zhang">Jiantao Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Hongxia" sort="Zhang, Hongxia" uniqKey="Zhang H" first="Hongxia" last="Zhang">Hongxia Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant biotechnology journal</title>
<idno type="eISSN">1467-7652</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cytochrome P-450 Enzyme System (genetics)</term>
<term>Cytochrome P-450 Enzyme System (metabolism)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Gene Expression Regulation, Plant (genetics)</term>
<term>Oryza (drug effects)</term>
<term>Oryza (enzymology)</term>
<term>Oryza (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (drug effects)</term>
<term>Plants, Genetically Modified (enzymology)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Salt Tolerance (genetics)</term>
<term>Sodium Chloride (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chlorure de sodium (pharmacologie)</term>
<term>Cytochrome P-450 enzyme system (génétique)</term>
<term>Cytochrome P-450 enzyme system (métabolisme)</term>
<term>Oryza (effets des médicaments et des substances chimiques)</term>
<term>Oryza (enzymologie)</term>
<term>Oryza (métabolisme)</term>
<term>Populus (enzymologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Régulation de l'expression des gènes végétaux (génétique)</term>
<term>Tolérance au sel (génétique)</term>
<term>Végétaux génétiquement modifiés (effets des médicaments et des substances chimiques)</term>
<term>Végétaux génétiquement modifiés (enzymologie)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cytochrome P-450 Enzyme System</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cytochrome P-450 Enzyme System</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Oryza</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Oryza</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Oryza</term>
<term>Populus</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Oryza</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Salt Tolerance</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cytochrome P-450 enzyme system</term>
<term>Protéines végétales</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Tolérance au sel</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Oryza</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytochrome P-450 enzyme system</term>
<term>Oryza</term>
<term>Protéines végétales</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Chlorure de sodium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sodium Chloride</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In Arabidopsis thaliana and Oryza sativa, the cytochrome P450 (CYP) 714 protein family represents a unique group of CYP monooxygenase, which functions as a shoot-specific regulator in plant development through gibberellin deactivation. Here, we report the functional characterizations of PtCYP714A3, an OsCYP714D1/Eui homologue from Populus trichocarpa. PtCYP714A3 was ubiquitously expressed with the highest transcript level in cambium-phloem tissues, and was greatly induced by salt and osmotic stress in poplar. Subcellular localization analyses indicated that PtCYP714A3-YFP fusion protein was targeted to endoplasmic reticulum (ER). Expression of PtCYP714A3 in the rice eui mutant could rescue its excessive-shoot-growth phenotype. Ectopic expression of PtCYP714A3 in rice led to semi-dwarfed phenotype with promoted tillering and reduced seed size. Transgenic lines which showed significant expression of PtCYP714A3 also accumulated lower GA level than did the wild-type (WT) plants. The expression of some GA biosynthesis genes was significantly suppressed in these transgenic plants. Furthermore, transgenic rice plants exhibited enhanced tolerance to salt and maintained more Na(+) in both shoot and root tissues under salinity stress. All these results not only suggest a crucial role of PtCYP714A3 in shoot responses to salt toxicity in rice, but also provide a molecular basis for genetic engineering of salt-tolerant crops.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26970512</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1467-7652</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2016</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>Plant biotechnology journal</Title>
<ISOAbbreviation>Plant Biotechnol J</ISOAbbreviation>
</Journal>
<ArticleTitle>Ectopic expression of a cytochrome P450 monooxygenase gene PtCYP714A3 from Populus trichocarpa reduces shoot growth and improves tolerance to salt stress in transgenic rice.</ArticleTitle>
<Pagination>
<MedlinePgn>1838-51</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pbi.12544</ELocationID>
<Abstract>
<AbstractText>In Arabidopsis thaliana and Oryza sativa, the cytochrome P450 (CYP) 714 protein family represents a unique group of CYP monooxygenase, which functions as a shoot-specific regulator in plant development through gibberellin deactivation. Here, we report the functional characterizations of PtCYP714A3, an OsCYP714D1/Eui homologue from Populus trichocarpa. PtCYP714A3 was ubiquitously expressed with the highest transcript level in cambium-phloem tissues, and was greatly induced by salt and osmotic stress in poplar. Subcellular localization analyses indicated that PtCYP714A3-YFP fusion protein was targeted to endoplasmic reticulum (ER). Expression of PtCYP714A3 in the rice eui mutant could rescue its excessive-shoot-growth phenotype. Ectopic expression of PtCYP714A3 in rice led to semi-dwarfed phenotype with promoted tillering and reduced seed size. Transgenic lines which showed significant expression of PtCYP714A3 also accumulated lower GA level than did the wild-type (WT) plants. The expression of some GA biosynthesis genes was significantly suppressed in these transgenic plants. Furthermore, transgenic rice plants exhibited enhanced tolerance to salt and maintained more Na(+) in both shoot and root tissues under salinity stress. All these results not only suggest a crucial role of PtCYP714A3 in shoot responses to salt toxicity in rice, but also provide a molecular basis for genetic engineering of salt-tolerant crops.</AbstractText>
<CopyrightInformation>© 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Cuiting</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Haihai</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ran</LastName>
<ForeName>Xiaojuan</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Bei</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jiantao</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Hongxia</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>03</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant Biotechnol J</MedlineTA>
<NlmUniqueID>101201889</NlmUniqueID>
<ISSNLinking>1467-7644</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9035-51-2</RegistryNumber>
<NameOfSubstance UI="D003577">Cytochrome P-450 Enzyme System</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003577" MajorTopicYN="N">Cytochrome P-450 Enzyme System</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055049" MajorTopicYN="N">Salt Tolerance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">PtCYP714A3</Keyword>
<Keyword MajorTopicYN="Y">cytochrome P450 monooxygenase</Keyword>
<Keyword MajorTopicYN="Y">development</Keyword>
<Keyword MajorTopicYN="Y">salinity</Keyword>
<Keyword MajorTopicYN="Y">transgenic plant</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>11</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>01</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>01</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26970512</ArticleId>
<ArticleId IdType="doi">10.1111/pbi.12544</ArticleId>
<ArticleId IdType="pmc">PMC5069455</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2002 Apr 18;416(6882):701-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11961544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Mar;33(5):857-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9106509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jul;67(2):342-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21457373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Aug;32(8):1132-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19422608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1947-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23319637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(7):1565-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17585298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):863-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2002 Feb;25(2):239-250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11841667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e43530</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22937061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Analyt Technol Biomed Life Sci. 2011 Apr 15;879(13-14):938-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Jul;64(10):2847-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23667043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Feb;47(2):181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Feb;11(1):9-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jan 27;9(1):e87110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24475234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Mar;86(3):857-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2010 Jun;29(6):643-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4698-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10200325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2000 Feb;53(4):519-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10731033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S61-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2011 Nov;30(11):2037-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21717184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2011 Apr;180(4):634-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jan;53(2):275-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17999643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2003 Aug;21(8):909-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12858182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2002 Mar;59(6):679-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11867101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Sep;18(9):2172-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16920780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Mar 21;299(5614):1896-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12649483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 6;311(5757):91-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16400150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1994 Aug;6(2):271-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7920717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Oct;159(2):767-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11606551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e47275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23077584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Aug 1;23(15):1805-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19651988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Feb;18(2):442-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16399803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jul;15(7):1591-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Sep 29;437(7059):693-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16193045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):32-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Sep;20(9):2420-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18805991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2013 Nov;54(11):1837-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24009336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Oct;36(2):189-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14535884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jan;15(1):151-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Feb;33(4):751-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2006 Aug;15(4):399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16906440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(5):720-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jan;24(1):96-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22267487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:225-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18173378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):1900-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22013217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 May;138(1):243-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15821147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8909-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11438692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2003 Apr;116(2):161-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Mar;37(3):573-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23941462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Aug;67(6):589-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18470484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Nov;56(4):613-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18643985</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Cuiting" sort="Wang, Cuiting" uniqKey="Wang C" first="Cuiting" last="Wang">Cuiting Wang</name>
</noRegion>
<name sortKey="Li, Bei" sort="Li, Bei" uniqKey="Li B" first="Bei" last="Li">Bei Li</name>
<name sortKey="Ran, Xiaojuan" sort="Ran, Xiaojuan" uniqKey="Ran X" first="Xiaojuan" last="Ran">Xiaojuan Ran</name>
<name sortKey="Wang, Haihai" sort="Wang, Haihai" uniqKey="Wang H" first="Haihai" last="Wang">Haihai Wang</name>
<name sortKey="Yang, Yang" sort="Yang, Yang" uniqKey="Yang Y" first="Yang" last="Yang">Yang Yang</name>
<name sortKey="Zhang, Hongxia" sort="Zhang, Hongxia" uniqKey="Zhang H" first="Hongxia" last="Zhang">Hongxia Zhang</name>
<name sortKey="Zhang, Jiantao" sort="Zhang, Jiantao" uniqKey="Zhang J" first="Jiantao" last="Zhang">Jiantao Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001908 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001908 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26970512
   |texte=   Ectopic expression of a cytochrome P450 monooxygenase gene PtCYP714A3 from Populus trichocarpa reduces shoot growth and improves tolerance to salt stress in transgenic rice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26970512" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020